US009164735B2

a2z United States Patent (10) Patent No.: US 9,164,735 B2
Hux et al. 45) Date of Patent: Oct. 20, 2015
(54) ENABLING POLYMORPHIC OBJECTS 20086/5‘05272’ %é ill : ?gggé gaﬂ}rllic_hiliel tet lal' ~~~~~~~~~~ ;};; }g(l)
ACROSS DEVICES IN A HETEROGENEOUS 5008/0244507 AL* 102008 Hodson et al. ~errr.. 717/106
PLATFORM 2008/0256330 Al* 10/2008 Wang etal. ... 712/24
2010/0153934 Al* 6/2010 Lachner 717/146
(71) Applicants: William Allen Hux, Hillsboro, OR (US); %8}2;8}5%28 ﬁi: ;gg}g gini(l;elrﬁ...t. 1 ; };;i;&g
Nicolas Galoppo Von Borries, Portland, 20130141443 AL* 62013 Schmit et al o 345503
OR (US)
(72) Inventors: William Allen Hux, Hillsboro, OR (US); FOREIGN PATENT DOCUMENTS
Nicolas Galoppo Von Borries, Portland, WO WO02011/053303 * 52011
OR (US)
OTHER PUBLICATIONS
(73) Assignee: Intel Corporation, Santa Clara, CA Saha et al., “Programming Model for a Heterogeneous x86 Plat-
Us) form,” 2009, ACM 978-1-60558-392-Jan. 9, 2006, pp. 1-10.*
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 38 days. Primary Examiner — Thuy Dao
Assistant Examiner — Stephen Berman
(21) Appl. No.: 13/628,196 (74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP
(22) Filed: Sep. 27, 2012
57 ABSTRACT
(65) Prior Publication Data In accordance with disclosed embodiments, there are pro-
US 2014/0089905 A1l Mar. 27, 2014 vided methods, systems, and apparatuses enabling polymor-
phic objects across devices in a heterogeneous platform.
(51) Int.CL According to the disclosed embodiments, such means
GO6F 9/44 (2006.01) include, for example, receiving, at a device aware compiler,
GOG6F 9/45 (2006.01) source code for a computer program as input; compiling the
(52) US.CL source code for the computer program, in which the compil-
CPC .. GOGF 8/24 (2013.01); GO6F 8/41 (2013.01); ing includes at least: generating two distinct sets of execut-
GO6F 8/47 (2013.01) able binary instructions for a method of an object; in which a
(58) Field of Classification Search first of the two distinct sets of executable binary instructions
None for the method of the object provides first binary instructions
See application file for complete search history. for the method executable by a first computing device and not
executable by a second computing device; and in which a
(56) References Cited second of the two distinct sets of executable binary instruc-

U.S. PATENT DOCUMENTS

tions for the method of the object provides second binary
instructions for the method executable by the second comput-
ing device and not executable by the first computing device.

5764991 A * 6/1998 Carcerano 717/140 . .
6106569 A * $/2000 Bohrer etal. ... 717/100 Other related embodiments are disclosed.
6,163,813 A * 12/2000 Jenneycceeeeenn. 719/315
6,199,197 B1* 3/2001 Engstrometal. 717/100 27 Claims, 12 Drawing Sheets
(o 20
S&‘d";e @' Device Aware Compiler
(input) £
Compiler Logic
206
) 4
Class Instance 207
7 vtable handle = 0" 208
- /// data
Heterogeneous s 7/ & jemasescccasesacaanena R a4
Computng Patom2s 7 Optore shasd Vomoy 201
CPU Device 220 47 |I GPU Devics 225 Acoslerator Device 230 /I N \imaging Device 235
vatles 221 | \{ vables 225 | vibles 231 |4~ Viables 236

US 9,164,735 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Wikipedia, “Cross Compiler,” 2008, downloaded from the Wayback
Machine Internet Archive, pp. 1-7.*

Wikipedia, “Embedded System,” 2008, downloaded from the
Wayback Machine Internet Archive, pp. 1-9.*

Wikipedia, “Hash Table,” 2012, downloaded from the Wayback
Machine Internet Archive, pp. 1-17.*

Wikipedia, “Name Mangling,” 2011, downloaded from the Wayback
Machine Internet Archive, pp. 1-10.*

Wikipedia, “Globally Unique Identifier,” 2011, downloaded from the
Wayback Machine Internet Archive, pp. 1-7.*

Banerjee et al., “A MATLAB compiler for distributed, heteroge-
neous, reconfigurable computing systems,” 2000, IEEE Symposium
on Field-Programmable Custom Computing Machines, pp. 39-48.*
Vignesh et al., Compiler and runtime support for enabling general-
ized reduction computations on heterogeneous parallel configura-
tions,” 2010, ICS 10 Proceedings of the 24th ACM International
Conference on Supercomputing, pp. 137-146.*

Linderman et al., “Merge: a programming model for heterogeneous
multi-core systems,” 2008, ASPLOS XIII Proceedings of the 13th
international conference on Architectural support for programming
languages and operating systems, pp. 287-296.*

* cited by examiner

US 9,164,735 B2

Sheet 1 of 12

Oct. 20, 2015

U.S. Patent

.n) ‘sBa| elRQ
‘(Jequoseq
‘()anop

T11 boq ssep

'Sul} 'sa[eds eleq
‘(Jequoseq
‘()anoy

L1 ysld ssep

{()aquosaq [enuip
{()ano [enuIA

IT [ewiuy SSep

Vi 'Ol

00}~ T~—w

US 9,164,735 B2

Sheet 2 of 12

Oct. 20, 2015

U.S. Patent

GO PSMO||0} SisjuIod

GO| PSMO||0} SisjuIod

—

Ig] ejep

9T Jajuiod s|qei

GET zp bog

e eep

IS Joiod ajgein

T 1p Bog

IT] ejep
9z1 Jeuiod ajgen

¢l g uslH

ger {1 (Jaquosaq::Bog @]} J8)ui0d 8quoseQ
ST) ()anop::6oq —] oy} Jojuiod anop
Sy o|gew Bog
TGT {'} ()equoseq::ysid — 77T J33ui0d 5GUOSSQ
0G7 {1 (enop:ustq - TFT Jajuiod arop
0P alqeA ysi4

Y
09} suononJsu| a|qenoex3

ol T~

dl "Old

Zeb EEp
TZ1 Jsiod sjgeia

¢l 1 usly

US 9,164,735 B2

Sheet 3 of 12

Oct. 20, 2015

U.S. Patent

091 Suojonysu| G91 PAMO|j0}
3/qEynoaxg siejuI0d

r A Y

GOl Pamoj|o4 Jejulod

—

G1 { '} ()aquosaq::Boq ——i

777 Jayuiod aquossq

0L T~—0w

Jl Ol

,,‘

161 NdD 0} NdD woly
parow Lp Bo(198[60

5T) (Jenoy::60 — o[Jajuiod anop ’
Syl e|qein bo —
BT siqei Bog // — o
TET Jewuod g|geia
B VR RS 0%T 1p Bog

! ZET Elep |
| Jeruodoeen | /

J— []
H 0cT L Bog ' L /
teccccoccnccccccccag-! Bl 20180 NdD Y, BT 991030 NdD

Vﬁ
/7
™~ s
-~

US 9,164,735 B2

Sheet 4 of 12

Oct. 20, 2015

U.S. Patent

acar {} (aquoseq::fog [

Q77T JaUI0d 9quasaq

gier {1 Qenop:Boq ettt

g9/ JSjuIod SAOW

037 suonejuswa|dw

V28T {7} ()9qu0s8(:50(|

V111 Jsjulod 8quoasa(

vIgr {7} (Jerop::600 [eg—rvi

V9.1 JojuIod SA0N

Y037 suonejuswa|dw

oL 7 T~

di ‘Old

TZ1 .0, = 8lpuey sjgenn

0Zt 1p Bog

pOUBIN 21J0BdS-NdD BGZY dige bod Ndd DOUISIY UI990S-NdS) VSZ} elge Bog ndo
T8 oIqeI USid 0) Jejuiog VBT elgej Usid 0} Jejuiod
5987 algen bog oy auod VBT ooy Bog o sawiog
[v i
=i} \ Vel |
ey 8|geA [ewiuy 4108dSNdD \ Keury ajgei fewiuy 9y0ads-Ndo) |
'\ 86} 2meq nNdd | wreomeqndo
N /
N /
~ 77T s
~_ 221 Bep P

US 9,164,735 B2

Sheet 5 of 12

Oct. 20, 2015

U.S. Patent

¥61 Auo g6l e6l Aluo
NdO 4o} suoorusu] SPOLRSIN PaALED - N9 J0} suojonjsy|
a|qejnoex3 Aeuig SLUes 3y} 10} 8188 s|qenoexg Aeurg
ﬂ AL uononysu| juasapiq A
@zt {1 0g-poyssiN::peAUsq [«l—] TZZT Jeiulod g-Pousiy D28t {1 ()g-powpsiy::peausq f«—] DZZT Jauiod g-pourepy
arar { '} Ov-pouieiN::penuaq lag—q TOZT JEIUIOH Y-POLIO 18T {1} (v-poupein::paaliaq jeg—q D977 J83UI0d Y-POYIBIA
7037 suoneyuswsidu) 7097 suonejusws|duwi
PO O93dS-NdO QGLT aIGei ponveq POUFaN 01BCS-D OSIF oldeiA paniieq
Q.81 8|qeiA paAle(0) Jajulod 181 1qeA paals(0} Jajuiod
{981 9|qelA paauaq 03 Jajulod ' 7981 s|qe1A paAlsq 03 Jajulod V
_) | 1
assr \ DS8T |
Aeury s|qeja sseq oy0ads-NdD \ Aeuy s|qejn sseg oyoadg-NdO |
'\ BT %00ea ndd [/ w@reomeando
N\
N < v /
~o Z67 e1ep e

161 .0, =SlpuBy s|geln

061 20ueIsu| SSe|D

170] R 4

3l 'Ol

US 9,164,735 B2

Sheet 6 of 12

Oct. 20, 2015

U.S. Patent

9ET se|qe

_y| TEZ selqein

92¢ se|qei

\ T2 so|qemn

v
TTz 2amae(Buibew\ /| DEZ 991A8(JOIRIS|2Y Szz 9omaqndo | 7 02¢ 991n8Q Nd9D
/ I / 7
| Aindeiededaied i dda it d et i died it |
\ , m 06 Mowsyy paueys jeuondo m \\ y 4 GTC wiopeld bugndwod
oz ~ 7 snosuabousloH
—~ %4
A1 _E
P -~
Bjep pad
— |~
80¢ .0, = 8IpuUeY 8|gBIA
70¢ 9ouesu| sse|n
A
90¢
21607 Jopdwo) /

s (ndur)
g0¢ 3p09
19)1dwoY) auemy 821A9(- g 20108

00~ T~——1u0 <

V¢ Ol

US 9,164,735 B2

Sheet 7 of 12

Oct. 20, 2015

U.S. Patent

e~ T~

d¢ Ol

292 s18lq0

gz Wweibold Jaindwon

[]o74
185 oINSyl

9G¢
Aowapy

¥SZ NdO

— —— -

paleys

(374
188 uondNASU|

25 NdD

0Cz 921n8(Bunndwon

U.S. Patent Oct. 20,

FIG. 3A
300 _—" ™

2015 Sheet 8 of 12

Execute a computer program within a heterogeneous
computing platform having a first computing device and
a second computing device of a different type. 35

Instantiate an object of the computer program at the
first computing device. 310

Move the object instantiated at the first computing
device to the second computing device for further
execution. 315

Invoke a method of the object at the second computing
device. 320

Execute binary instructions referenced by the invoked
method of the object, wherein the binary instructions
are executed by the second computing device.

325

End

US 9,164,735 B2

U.S. Patent Oct. 20, 2015 Sheet 9 of 12 US 9,164,735 B2

FIG. 3B
0~ ™
Execute a computer program within a heterogeneous

computing platform having a first computing device and
a second computing device of a different type.350

Two-stage
Indirection 399 y

Instantiate an object of the computer program.

&
v
Follow a pointer from a vtable handle of the object to a
device specific viable for the object based on which of
the first or second computing device the instantiated
object is presently executing. 360

Device
aware vtable
handle
362

Follow a pointer from a vtable specific to Follow a pointer from a vtable specific to
the first device for the object to a binary the second device for the object to a binary
executable instruction compatible with an executable instruction compatible with an
instruction set of the first device instruction set of the second device
corresponding to a method corresponding to a method
for the object. 365 for the object. 375

First Device Second Device

4
Execute the binary executable instruction at Execute the binary executable instruction at
the first device, in which the binary the second device, in which the binary
executable instruction is not compatible executable instruction is not compatible
with the second device. 370 with the first device. 380

End

US 9,164,735 B2

auoyduews
Y PI8y-pueH

Sheet 10 of 12

Oct. 20, 2015

U.S. Patent

| L Jossaooid
pajeibaju|

Sty
S0BLBIU| USBIISYON0 |
201A8(1
Bunndwon 1e1q8]
0¥

<

a0y

|} J0ssao0ud
pajelbayy|

*147
80BLISJU| USRIOSLON0]

Vv 'Ol

US 9,164,735 B2

Sheet 11 of 12

Oct. 20, 2015

U.S. Patent

437
E)EREIN
AY1dSia

{57
W3LSASANS AV1dSIa

(174

H3IT0HLNOD Ol

W3LSASANS Olanv

0cv

0o
INFWIDOVYNYIN 4IMOd
0%
WILSASANS AHOW3AN
oy
¥0SS320Hd
/ —
SSITFHIM
13
qvY1N1130 —
0¥
ALIAILOANNOD
7oF 7o
WOHA 0oL
7
SNOILDANNOD TvHIHdIY3d
| S—

gy 'Ol

U.S. Patent

Oct. 20, 2015 Sheet 12 0f 12 US 9,164,735 B2
/502
PROCESSOR AN 5%
PROCESSING [526~
LOGIC B | PERIPHERAL
— 504 DEVICE
MAIN MEMORY
i 512
54 ALPHANUMERIC
oo LV INPUT DEVICE
INSTRUCTIONS CURSOR
514—| CONTROL DEVICE
SOFTWARE }522
POLYMORPHIC | |, 523
OBJECTS "
I 2 530
10
- »| USER INTERFACE
16
534
= | mnTEcRATED
COMPILER | > ™| SPEAKER
518
— 508 /4
NETWORK SECONDARY MEMORY
'NJE,.‘F,‘[F,ASCE > MACHINE-ACCESSIBLE | | , 531
() Py STORAGE MEDIUM
\’\ /522
‘ 520 SOFTWARE -

US 9,164,735 B2

1
ENABLING POLYMORPHIC OBJECTS
ACROSS DEVICES IN A HETEROGENEOUS
PLATFORM

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

TECHNICAL FIELD

The subject matter described herein relates generally to the
field of computing, and more particularly, to systems and
methods for enabling polymorphic objects across devices ina
heterogeneous platform.

BACKGROUND

The subject matter discussed in the background section
should not be assumed to be prior art merely as a result of its
mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The subject matter in the background section merely repre-
sents different approaches, which in and of themselves may
also correspond to embodiments of the claimed subject mat-
ter.

In computer science, polymorphism is a programming lan-
guage feature that allows values of different data types to be
handled using a uniform interface. A function that can evalu-
ate or be applied to values of different types is known as a
polymorphic function. A data type that can appear to be of a
generalized type (e.g., a list with elements of arbitrary type) is
designated polymorphic data type like the generalized type
from which such specializations are made.

Different kinds of polymorphism are known. For instance,
if a function denotes different and potentially heterogeneous
implementations depending on a limited range of individu-
ally specified types and combination, it is called ad-hoc poly-
morphism. Ad-hoc polymorphism is supported in many lan-
guages using function and method overloading.

Conversely, if code is written without mention of any spe-
cific type and thus can be used transparently with any number
of new types, it is called parametric polymorphism. Paramet-
ric polymorphism is widely supported in statically typed
functional programming languages. In the object-oriented
programming community, programming using parametric
polymorphism is sometimes called generic programming.

In object-oriented programming, subtype polymorphism
or inclusion polymorphism is a concept in type theory
wherein a name may denote instances of many different
classes as long as they are related by some common super
class. Inclusion polymorphism is generally supported
through subtyping, that is to say, objects of different types
may be substituted for objects of another type, and thus can be
handled via a common interface.

As beneficial as polymorphism is to programmers, its prac-
ticality is severely limited when used on computing platforms
having non-uniform and heterogeneous computing hardware.

For instance, with conventional methodologies, the tar-
geted computing platform upon which code is expected to run

10

15

20

25

30

35

40

45

50

55

60

65

2

is homogenous, such as a computing platform using a con-
ventional Central Processor Unit (CPU). During execution of
code developed using these conventional methodologies, it is
assumed that a pointer followed will arrive at an appropriate
instruction for execution via the exemplary CPU. This
assumption has been safe historically because homogenous
systems, such as those having only a CPU or multiple CPUs
of'the same type for executing instructions, were so common
place.

Unfortunately, in a heterogeneous computing platform
having multiple non-uniform hardware components, each of
which being capable to execute instructions, the preceding
assumption may be erroneous. Thus, use of the conventional
methodologies results in the following of a pointer that may
yield a result incapable of being executed by one of the
hardware components in the non-uniform environment.

The present state of the art may therefore benefit from
systems and methods for enabling polymorphic objects
across devices in a heterogeneous platform as described
herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example, and not by
way of limitation, and will be more fully understood with
reference to the following detailed description when consid-
ered in connection with the figures in which:

FIG. 1A illustrates an exemplary architecture in accor-
dance with which embodiments may operate;

FIG. 1B illustrates another exemplary architecture in
accordance with which embodiments may operate;

FIG. 1C illustrates another exemplary architecture
accordance with which embodiments may operate;

FIG. 1D illustrates another exemplary architecture i
accordance with which embodiments may operate;

FIG. 1E illustrates another exemplary architecture
accordance with which embodiments may operate;

FIG. 2A illustrates another exemplary architecture
accordance with which embodiments may operate;

FIG. 2B illustrates another exemplary architecture i
accordance with which embodiments may operate;

FIGS. 3A and 3B set forth flow diagrams illustrating meth-
ods for enabling polymorphic objects across devices in a
heterogeneous platform in accordance with described
embodiments;

FIG. 4A depicts a tablet computing device and a hand-held
smartphone each having a circuitry, components, and func-
tionality integrated therein as described in accordance with
the embodiments;

FIG. 4B is a block diagram of an embodiment of tablet
computing device, a smart phone, or other mobile device in
which touchscreen interface connectors are used; and

FIG. 5 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system, in
accordance with one embodiment.

DETAILED DESCRIPTION

Described herein are systems, apparatuses, and methods
enabling polymorphic objects across devices in a heteroge-
neous platform. For example, in one embodiment, such
means may include receiving, at a device aware compiler,
source code for a computer program as input; compiling the
source code for the computer program, in which the compil-
ing includes at least: generating two distinct sets of execut-
able binary instructions for a method of an object; in which a
first of the two distinct sets of executable binary instructions

US 9,164,735 B2

3

for the method of the object provides first binary instructions
for the method executable by a first computing device and not
executable by a second computing device; and in which a
second of the two distinct sets of executable binary instruc-
tions for the method of the object provides second binary
instructions for the method executable by the second comput-
ing device and not executable by the first computing device.

Modern computing platforms now exist with non-uniform
and heterogeneous computing hardware, in which multiple of
the individual components within the computing platform are
each individually capable of executing instructions. For
instance, consider a computing device such as a laptop or
smartphone that includes both a Central Processing Unit
(CPU) and also a Graphics Processing Unit (GPU). Each of
the CPU and also the GPU may execute instructions. How-
ever, this does not mean that they are capable of executing the
same underlying binary code. Each of the CPU and the GPU
have differing architectures, and thus, each requires a differ-
ent instruction to perform an otherwise equivalent operation.

A CPU within a computing device carries out instructions
of'a computer program by performing the basic arithmetical,
logical, and input/output operations. A GPU (occasionally
referred to as a Visual Processing Unit (VPU)) is conversely
a specialized electronic circuit designed to rapidly manipu-
late and alter memory to accelerate the building of images in
a frame buffer intended for output to a display. Each of the
CPU and the GPU are tailored to different needs. For
instance, GPUs are very efficient at manipulating computer
graphics, and their highly parallel structure makes them more
effective thana CPU for algorithms where processing of large
blocks of data is done in parallel, such as when rendering
display output.

A compiler is a computer program or set of programs that
transforms source code written in a higher level programming
language into another computer language, the target lan-
guage, typically having a binary form known as object code.
The most common reason for transforming source code into
the target language is to create an executable program.

When code is compiled for execution on a computing
platform, the compiler must translate the higher level pro-
gramming language code into instructions that are executable
by the computing platform. More specifically, the higher level
programming language code must be compiled into instruc-
tions for a CPU if they are to be executed by a CPU or
compiled into a GPU if the instructions are to be executed by
a GPU. Similarly, if other components or different compo-
nents are present and capable to execute instructions, such as
an accelerator or an imaging device, then the compiler must
appropriately compile executable instructions for the targeted
computing hardware component.

Conventional solutions do not provide the capability to
compile code that is capable to execute on a heterogeneous
computing platform, having multiple distinct computing
components, each requiring different instructions for per-
forming the same computational function. For instance, con-
ventional mechanisms do not compile code that is “aware” or
capable to distinguish among the underlying hardware com-
ponents within a heterogeneous computing platform and able
to select and execute the appropriate instruction correspond-
ing to a given hardware component, such as the CPU, or the
GPU, or an accelerator, etc. Instead, compiled code is targeted
for only one such component, with the assumption that the
computing platform is homogenous.

In the following description, numerous specific details are
set forth such as examples of specific systems, languages,
components, etc., in order to provide a thorough understand-
ing of the various embodiments. It will be apparent, however,

30

40

45

50

55

4

to one skilled in the art that these specific details need not be
employed to practice the embodiments disclosed herein. In
other instances, well known materials or methods have not
been described in detail in order to avoid unnecessarily
obscuring the disclosed embodiments.

Inaddition to various hardware components depicted in the
figures and described herein, embodiments further include
various operations which are described below. The operations
described in accordance with such embodiments may be per-
formed by hardware components or may be embodied in
machine-executable instructions, which may be used to cause
a general-purpose or special-purpose processor programmed
with the instructions to perform the operations. Alternatively,
the operations may be performed by a combination of hard-
ware and software.

Embodiments also relate to an apparatus for performing
the operations disclosed herein. This apparatus may be spe-
cially constructed for the required purposes, or it may be a
general purpose computer selectively activated or reconfig-
ured by a computer program stored in the computer. Such a
computer program may be stored in a computer readable
storage medium, such as, but not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMs, magnetic
or optical cards, or any type of media suitable for storing
electronic instructions, each coupled with a computer system
bus. The term “coupled” may refer to two or more elements
which are in direct contact (physically, electrically, magneti-
cally, optically, etc.) or to two or more elements that are not in
direct contact with each other, but still cooperate and/or inter-
act with each other.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear as set forth in the descrip-
tion below. In addition, embodiments are not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the embodiments as
described herein.

Any of the disclosed embodiments may be used alone or
together with one another in any combination. Although vari-
ous embodiments may have been partially motivated by defi-
ciencies with conventional techniques and approaches, some
of which are described or alluded to within the specification,
the embodiments need not necessarily address or solve any of
these deficiencies, but rather, may address only some of the
deficiencies, address none of the deficiencies, or be directed
toward different deficiencies and problems which are not
directly discussed.

FIG. 1A illustrates an exemplary architecture 100 in accor-
dance with which embodiments may operate.

The architecture 100 set forth at FIG. 1 depicts a class
hierarchy showing the “Animal” class at element 111 with
two virtual methods “Move” and “Describe.” Derived there-
from are the “Fish” class at element 112 and the “Dog” class
at element 113, each of the derived classes 112 and 113
defining different implementations of the same behaviors
with different attributes. Class Fish at element 112 addition-
ally specifies Data as scales and fins and class Dog at element
113 additionally specifies Data as legs and fur.

Using the example from FIG. 1A with the exemplary base
class Animal 111, for each polymorphic object inheriting the

US 9,164,735 B2

5

base information, it is known from the parent object how to
perform the “Move” and “Describe” operations, but each
inheriting object presents their own respective version of the
“Move” and “Describe” operations.

FIG. 1B illustrates another exemplary architecture 101 in
accordance with which embodiments may operate.

Object oriented programming languages, such as C++ and
others, support polymorphism, that is, the ability of objects
belonging to different types to respond to method, field, or
property calls of the same name, each one according to an
appropriate type-specific behavior. The programming lan-
guages implement such capability by storing a pointer in each
object instance to a shared virtual function table (vtable), in
which the vtable contains a pointer for every polymorphic
function in the class pointing to the specific version of the
function that corresponds to that instance.

As can be seen from FIG. 1B, each of the respective classes
have a pointer linking to a class vtable, which in turn provides
pointers that may be followed to an appropriate instruction for
execution.

More particularly, each object derived from class Animal at
element 111 from FIG. 1A has a pointer to a vtable. As
depicted at FIG. 1B, Fish {1 at element 120 includes a vtable
pointer 121 and data 122 and Fish F2 at element 125 includes
vtable pointer 126 and data 127. Similarly, Dog d1 at element
130 includes vtable pointer 131 and data 132 and Dog d2 at
element 135 includes vtable pointer 136 and data 137.

While each of Fish f1 and Fish {2 have distinct data (122
and 127 respectively), the vtable pointer for each of Fish f1
and Fish 2 both point to the same Fish vtable at element 140.
Similarly, Dog d1 and Dog d2 each have distinct data also
(132 and 137 respectively), yet, the vtable pointer for each of
Dog d1 and Dog d2 both point to the same Dog vtable at
element 145 when the pointers are followed (element 165).

Inturn, each vtable includes pointers to implementations of
the methods that correspond to the given class, the implemen-
tations being executable instructions (element 160). Thus,
Fish vtable 140 includes Move pointer 141 which points to
Fish::Move() { ... } at element 150 and Describe pointer 142
which points to Fish::Describe() { . . . } at element 151.
Similarly, the Dog vtable 145 includes Move pointer 146
which points to Dog:Move() { . . . } at element 155
and Describe pointer 147 which points to Dog::
Describe() { . .. } at element 156.

However, using the exemplary architecture, should an
object be instantiated on a first hardware component using
one of the provided derived classes (e.g., 120, 125, 130, and
135), such as a being instantiated on a CPU, but then be
copied to another different hardware component, such as a
GPU where the object was not initially instantiated, then the
vtable pointer stored and associated with the corresponding
object will not be valid, and will point to, for example, execut-
able instructions for the CPU that cannot be performed by the
GPU. Other problems may also arise; for example, the pointer
may not be in the right address space, such as being within an
address space valid on the CPU but not valid for the GPU.
Alternatively, if the exemplary CPU and GPU are able to
share a common address space, then the referenced vtable
pointer may point to compiled executable binary code for the
wrong device, such as CPU executable code rather than GPU
executable code or visa versa.

Thus, given any set of devices with dissimilar and non-
uniform instruction sets or utilizing different memory address
spaces in a common heterogeneous computing platform, the
devices will not be able to share objects defined using con-
ventionally defined vtables.

25

40

45

50

55

6

FIG. 1C illustrates another exemplary architecture 102 in
accordance with which embodiments may operate. More par-
ticularly, each of GPU device 199 and CPU device 198 are
depicted.

If an instance of the class Dog is moved from a first device
of original instantiation to a different and non-uniform
device, such as from CPU device 198 to GPU device 199, then
its vtable will reflect a reference pointing back to the first
device of original instantiation where it was created. In a
platform with a common address space, the pointer may
therefore erroneously reference executable instructions 160
that are incompatible with the different device, as the refer-
enced instructions were compiled for the first device of origi-
nal instantiation. For example, the object moved to a GPU
may erroneously reference, by following the pointers 165,
executable instructions 160 of the CPU. In a computing plat-
form in which each distinct device has its own address space
(e.g., not shared), the pointer may reference garbage or
unknown data, which again is an erroneous result.

Element 197 and the curved hashed arrow indicates that
object Dog d1 130 is moved from the CPU device 198 where
it was instantiated to the GPU device 199, for further execu-
tion. Thus, when Dog d1 130 is referenced at GPU device
199, its vtable pointer 131 directs to the Dog vtable 145,
which in turn, erroneously references -either Dog::
Move(){ ...} at element 155 or Dog::Describe() { .. . } at
element 156, both of which are executable instructions 160
compiled for the CPU device 198 where the object was cre-
ated, and both of which are not compatible with the different
computing device requirements of GPU device 199 where the
Dogdl 130 object was moved and later referenced. The GPU
will not be able to execute the methods defined by object Dog
d1 130 now executing at the GPU device 199, because the
GPU device 199 uses a different instruction set than the CPU
device 198, hence the two components being non-uniform
and each part of a heterogeneous computing platform.

FIG. 1D illustrates another exemplary architecture 103 in
accordance with which embodiments may operate. In par-
ticular, a two-stage virtual function table is introduced allow-
ing a non-uniform heterogeneous computing platform to sup-
port polymorphic objects to move between the distinct non-
uniform devices, such as moving between a GPU device 199
and a CPU device, despite the fact that each device requires a
different instruction set for performing the same operations of
a given object.

As depicted, rather encoding the address of the vtable
directly into an object, an additional layer of indirection is
utilized which is device aware, such that the appropriate
pointer can be referenced and followed for the object, to the
appropriately compiled executable instruction for the device
presently executing the object. Thus, objects executing at the
GPU device 199 will be fulfilled with GPU-specific method
implementations 180A regardless of the object’s original
instantiation location and objects executing at the CPU device
198 will be fulfilled with CPU-specific method implementa-
tions 180B, again without regard to the object’s original
instantiation location.

Thus, architecture 103 depicts an object Dog d1 170 having
encoded therein a vtable handle="0" at element 171 rather
than a vtable pointer. Object Dog d1 170 additionally includes
data 172. The vtable handle 171 makes the object device
aware, and thus, depending on where the object is presently
executing, regardless of its original instantiation location, the
vtable handle 171 directs to the GPU device 199 if the object
is executing at the GPU device 199 and the vtable handle 171
directs to the CPU device 198 ifthe object is instead executing
at the CPU device 198.

US 9,164,735 B2

7

The GPU-specific animal vtable array 185A and CPU-
specific animal vtable array 185B each include pointers to
vtables for the Dog and Fish classes. The GPU-specific ani-
mal vtable array 185A includes pointer to Dog vtable 186A
and pointer to Fish vtable 187A. Similarly, the CPU-specific
animal vtable array 185B includes pointer to Dog vtable
186B and pointer to Fish vtable 187B.

On the GPU device 199 side, the pointer to Dog vtable
186A points to GPU Dog vtable 175A which provides refer-
ences to the GPU-specific method implementations 180A or
executable instructions compatible with the GPU Device 199
instruction set requirements. Thus, move pointer 176A points
to Dog::Move() { . .. } 181A and describe pointer 177A
points to Dog::Describe() { ...} 182A.

On the CPU device 198 side, the pointer to Dog vtable
186B points to CPU Dog vtable 175B which provides refer-
ences to the CPU-specific method implementations 180B or
executable instructions compatible with the CPU Device 199
instruction set requirements. Thus, move pointer 176B points
to Dog::Move() { . .. } 181B and describe pointer 1778
points to Dog::Describe() { ... } 182B.

Thus, consistent with the depicted architecture 103, a com-
piler is enabled for encoding the vtable handle 171 which is
used to look up a device-specific vtable, which in turn points
to device-compatible implementations of each virtual func-
tion.

Where each of the non-uniform devices making up the
heterogeneous computing platform utilize a shared address
space, the objects may be shared, transitioned, copied, or
moved back and forth and the depicted architecture 103 will
result in the appropriate executable instructions for the GPU
device 199 being referenced when objects are executing at the
GPU device and the appropriate executable instructions for
the CPU device 198 being referenced when objects are
executing at the CPU device. Although each set of instruc-
tions may reside within the same shared address space, each
will reside at distinct locations and the architecture 103
described will yield, through the device aware vtable handle
171 and subsequent pointers, the appropriate location.

Where each of the non-uniform devices making up the
heterogeneous computing platform utilized a non-shared
dedicated or exclusive address space, the objects may again
be shared, transitioned, copied, or moved back and forth and
the depicted architecture 103 will result in the appropriate
executable instructions for the GPU device 199 being refer-
enced when objects are executing at the GPU device and the
appropriate executable instructions for the CPU device 198
being referenced when objects are executing at the CPU
device. Each address space of the distinct GPU and CPU
devices may utilize a different data structure and potentially
reside upon distinct memories, within which the underlying
executable instruction resides, but the provided architecture
103, through the device aware vtable handle 171 and subse-
quently referenced pointers, will yield the appropriate loca-
tion within the appropriate data structure. In another possible
scenario, a computing platform may utilize different address
spaces, yet compatible binary code. In such a scenario, the
vtable pointers can be made to point to common bitcode
through a device aware compiler.

The two-stage scheme described herein and depicted in
detail at FIG. 1D may be implemented in various ways. For
instance, in one embodiment, each component or device
capable of executing instructions includes its own global
array of vtables. For instance, GPU device 199 and CPU
device 198 are each depicted as having a device specific
vtable array at elements 185A and 185B respectively. In one
embodiment, all of arrays of vtables are each identical in

10

15

20

25

30

35

40

45

50

55

60

65

8

terms of array size. In such an embodiment where the arrays
are consistent between devices, close communication
between the compiler or compilers for each device is main-
tained such that the compiler(s) rendering the binary com-
puter executable instructions for each of the respective
devices can ensure consistency between the vtable arrays for
the different devices, despite the fact that each will point to
different instruction sets or binary executable instructions for
the respective devices to implement the device specific meth-
ods. In one embodiment, the vtable handle 171 depicted at
element 171 is simply an index into the device specific vtable
arrays.

In another embodiment, each of the distinct devices (e.g.,
198 and 199) keeps a separate array of vtables for each base
class, each of the vtables being the same size. In such an
embodiment, vtable handle at element 171 is an array index
and each vtable array size equals the number of derived
classes for a given base class. In such an embodiment, close
coordination may again be required between the compiler or
compilers for the respective devices.

In one embodiment, each of the distinct devices (e.g., 198
and 199) keeps its own “table of vtables.” In such an embodi-
ment, all “Dog” type objects will use the first entry in the table
of tables, for instance, implemented as a 0-based array. The
“Fish” type objects would then use vtable handle 171 with a
value of “1.” In a variation of such an embodiment, the “table
of vtables” may be implemented on a per-object basis rather
than a per-device basis. With such a variation, a “Dog” type
object would point to the Dog table of vtables, and a “Fish”
type object would point to the Fish table of vtables. Code
running on the CPU device 198, for example, would thus
always follow the first entry in the “vtable table,” whereas
code running on the GPU device 199, for example, would
always follow the second entry, and so forth. In still another
variation of such an embodiment, there is an array for each
object type and the size of the array equals the number of
devices for which the compiler is aware.

In yet another embodiment, each device (e.g., 198 and 199)
maintains its own hash table of vtables in which the hash
tables are not necessarily the same size on each device. For
instance, it is possible that not all objects permissible are
instantiated on all devices, and thus, the resulting hash table
of'the vtables may be different in size for each of the devices
(198 and 199). In such an embodiment, the vtable handle at
element 171 is a unique hash key formed from the mangled
name of the class, for example, using C++ name mangling for
C++ source code implementations.

In another embodiment, each of the distinct devices (e.g.,
198 and 199) keeps a separate hash table of vtables per base
class in which the hash tables of vtables again are not neces-
sarily the same size for each of the devices. For example,
where not all of the permissible objects are instantiated on all
devices, the resulting hash table of vtables may differ in size
between devices. In such an embodiment, the hash key is a
function of the mangled name of the derived class. Smaller
hash tables yield a lower risk of collisions and may therefore
provide greater overall efficiency. Compiler optimizations
may further be applied to amortize the cost of double de-
references when there are multiple virtual function calls on
the same base object within the same context, consistent with
known compiler optimization techniques.

In yet another embodiment, each of the distinct devices
(e.g., 198 and 199) keeps a hash table of vtables which as
before, are not necessarily the same size on each device when
less than all objects are instantiated for one or more of the
devices. In such an embodiment, the vtable handle at element
171 is determined by assigning every class a global unique

US 9,164,735 B2

9

identifier, such as a Unique Identifier or “UID,” as is available
in some development environments, such as with Microsoft’s
Visual Studio projects. Still other implementation schemes
are possible.

FIG. 1E illustrates another exemplary architecture 104 in
accordance with which embodiments may operate. Here,
class instance 190 is depicted having therein vtable
handle="0" at element 191 and data 192. The vtable handle
191 is device aware and links to either the GPU-specific base
vtable array at 185C for the GPU device 199 or links alterna-
tively to the CPU-specific base vtable array at 185D for the
CPU device 198.

A compiler or compilers which support the respective
devices are used to create the various arrays, pointers, derived
vtables, and derived method implementations shown in sup-
port of the respective devices, such as a GPU device compat-
ible compiler for converting source code to binary executable
instructions or instruction sets for the GPU device 199 and/or
a CPU device compatible compiler for converting source
code to binary executable instructions or instruction sets for
the CPU device 198.

Use of an appropriate compiler therefore will generate
device specific instruction sets which are referenced regard-
less of where an instantiated object is presently executing and
regardless of where such an object is originally instantiated.
In such a way, instantiated objects may be copied, moved,
transferred, and so forth between devices within a heteroge-
neous computing platform and when their internal methods
are called, the appropriate instruction set for the appropriate
device will be located and properly executed.

Thus, the architecture 104 of FIG. 1E further depicts the
GPU-specific base vtable array 185C of GPU device 199 as
having pointers to derived vtables 186C and 187C. Pointer to
derived vtable 186C points to the derived vtable 175C which
includes two method pointers, Method-A pointer 176C which
points to Derived::Method-A() { . .. } 181C within the
GPU-specific method implementations 180C and also
Method-B pointer 177C which points to Derived:
Method-B() { . . . } 182C. With a similar structure, the
CPU-specific base vtable array 185D of CPU device 198
includes pointers to derived vtables 186D and 187D. Pointer
to derived vtable 186D points to the derived vtable 175D
which includes two method pointers, Method-A pointer
176D which points to Derived::Method-A() { . .. } 181D
within the CPU-specific method implementations 180D and
also Method-B pointer 177D which points to Derived::
Method-B() { ...} 182D.

The GPU-Specific method implementations 180C provide
binary executable instructions for GPU only as depicted by
element 193, as provided by a compatible compiler, and the
CPU-Specific method implementations 180D provide binary
executable instructions for CPU only as depicted by element
194, as provided by such a compatible compiler. Each of the
respective binary executable instructions 193 and 194 pro-
vide different instruction sets for the same derived methods as
depicted by element 195. For instance, while each of the
respective binary executable instructions 193 and 194 may be
derived from identical methods, for instance, based on a com-
mon source code, each yields different instructions sets which
are compatible with the appropriate device within a hetero-
geneous computing platform having non-uniform computing
devices capable of executing instructions, but not capable of
executing the same binary executable instructions due to dif-
fering instruction set requirements.

FIG. 2A illustrates another exemplary architecture 200 in
accordance with which embodiments may operate. More par-
ticularly, a device aware compiler 205 is depicted having

10

15

20

25

30

35

40

45

50

55

60

65

10

compiler logic 206 which is compatible with the methodolo-
gies and techniques described herein. Such compiler logic
206 takes as input, source code 210, for example, a program
written in C++ or other such higher level programming lan-
guage. The device aware compiler 205 is capable to render
device specific binary executable instructions for execution
by each of the multiple devices within a heterogeneous com-
puting platform 215 having non-uniform computing devices
each of which are able to execute binary instructions, but do
so according to differing instruction set requirements. Thus
the depicted device aware compiler 205 renders, for example,
aclass instance 207 which includes a vtable handle 208 rather
than a pointer directly to binary computer executable instruc-
tions for a referenced method. The vtable handle 208 appro-
priately points to vtables for the various devices of the het-
erogeneous computing platform 215 based on the present
location of execution for a given object. In such embodi-
ments, the vtable handle 208 is filled out by a compiler or at
runtime by any of the mechanisms described in accordance
with the preceding paragraphs through use of the provided
pointer 211, vtable handle 208, vtables 221 within CPU
device 220, pointer 212, vtable handle 208, vtables 226
within GPU device 225, pointer 213, vtable handle 208,
vtables 226 within accelerator device 230, pointer 214, vtable
handle 208, and vtables 236 within imaging device 235.

In one embodiment, each of the devices 220, 225, 230, and
235 within the heterogeneous computing platform 215 utilize
optional shared memory 250 of the heterogeneous computing
platform 215, and each of the vtables 221, 226, 231, and 236
referenced by vtable handle 208 reside within the optional
shared memory 250. In an alternative embodiment, each of
the devices 220, 225, 230, and 235 within the heterogeneous
computing platform 215 utilize address space which is exclu-
sive to the respective device, and the vtables 221, 226, 231,
and 236 referenced by vtable handle 208 reside within the
respective address spaces of the corresponding devices 220,
225, 230, and 235.

FIG. 2B illustrates another exemplary architecture 201 in
accordance with which embodiments may operate. More par-
ticularly, a computing device 250 is depicted having therein,
a Central Processing Unit (CPU) 252 embodying a first
instruction set 253; a Graphics Processing Unit (GPU) 254
embodying a second instruction set 255 different than the first
instruction set 253 of the CPU 252; a shared memory 256
operable in conjunction with both the CPU 252 and the GPU
254; and a computer program 260 having a plurality of
objects 262 therein, each capable of instantiation and execu-
tion at one or both of the GPU 254 and the CPU 252. And
further in which the computer program 260 causes the com-
puting device 250 to: (i) instantiate one of the plurality of
objects 262 of the computer program 260 at the CPU 252, (ii)
move the object 262 instantiated at the CPU 252 to the GPU
254 for further execution, (iii) invoke a method of the object
262 at the GPU 254, and (iv) execute binary instructions
referenced by the invoked method of the object 262, in which
the binary instructions are executed by the GPU 254.

FIGS. 3A and 3B set forth flow diagrams illustrating meth-
ods 300 and 301 for enabling polymorphic objects across
devices in a heterogeneous platform in accordance with
described embodiments. Methods 300 and 301 may be per-
formed by processing logic that may include hardware (e.g.,
circuitry, dedicated logic, programmable logic, microcode,
etc.), including that of a client, services provider, compiler
system, development system, etc. The numbering of the
blocks presented is for the sake of clarity and is not intended
to prescribe an order of operations in which the various blocks
must occur.

US 9,164,735 B2

11

At FIG. 3A, method 300 begins with processing logic for
executing a computer program within a heterogeneous com-
puting platform having a first computing device and a second
computing device of a different type (block 305).

Atblock 310, processing logic instantiates an object of the
computer program at the first computing device.

At block 315, processing logic moves the object instanti-
ated at the first computing device to the second computing
device for further execution.

At block 320, processing logic invokes a method of the
object at the second computing device.

Atblock 325, processing logic executes binary instructions
referenced by the invoked method of the object, in which the
binary instructions are executed by the second computing
device.

Turning now to FIG. 3B, method 301 begins with process-
ing logic for executing a computer program within a hetero-
geneous computing platform having a first computing device
and a second computing device of a different type. (block
350).

Atblock 355, processing logic instantiates an object of the
computer program.

At block 360, processing logic follows a pointer from a
vtable handle of the object to a device specific vtable for the
object based on which of'the first or second computing device
the instantiated object is presently executing.

At decision point 362, the device aware vtable handle
determines whether the object being referenced is executing
presently at the first computing device or executing presently
at the second computing device.

If the object is executing presently at the first computing
device, the flow advances to block 365, where processing
logic then follows a pointer from a vtable specific to the first
device for the object to a binary executable instruction com-
patible with an instruction set of the first device correspond-
ing to a method for the object.

Flow then proceeds to block 370, where processing logic
executes the binary executable instruction at the first device,
in which the binary executable instruction is not compatible
with the second device. Flow then ends.

Alternatively, if at decision point 362, the object is execut-
ing presently at the second computing device, the flow
advances instead to block 375, where processing logic then
follows a pointer from a vtable specific to the second device
for the object to a binary executable instruction compatible
with an instruction set of the second device corresponding to
a method for the object.

Flow then proceeds to block 380, where processing logic
executes the binary executable instruction at the second
device, in which the binary executable instruction is not com-
patible with the first device. Flow then ends.

In such an embodiment, blocks 360 365, and 375 with
decision point 362 collectively constitute a two-stage indirec-
tion 399 scheme.

FIG. 4A depicts a tablet computing device 401 and a hand-
held smartphone 402 each having a circuitry, components,
and functionality integrated therein as described in accor-
dance with the embodiments, such as a compiler and com-
puting devices for executing binary instructions along with
other necessary hardware and functionality to enable poly-
morphic objects across devices in a heterogeneous platform.
As depicted, each of the tablet computing device 401 and the
hand-held smartphone 402 include a touchscreen interface
445 and an integrated processor 411 in accordance with dis-
closed embodiments.

For example, in one embodiment, a client, such as hetero-
geneous computing platform 215 from FIG. 2A may be

10

15

20

25

30

35

40

45

50

55

60

65

12

embodied by a tablet computing device 401 or a hand-held
smartphone 402, in which a display unit of the apparatus
includes the touchscreen interface 445 for the tablet or smart-
phone and further in which memory and an integrated circuit
operating as an integrated processor 411 are incorporated into
the tablet or smartphone. In such an embodiment, the inte-
grated processor 411 implements functionality to enable
polymorphic objects across devices in a heterogeneous plat-
form according to the techniques described above.

FIG. 4B is a block diagram 403 of an embodiment of a
tablet computing device, a smart phone, or other mobile
device in which touchscreen interface connectors are used.
Processor 410 performs the primary processing operations.
Audio subsystem 420 represents hardware (e.g., audio hard-
ware and audio circuits) and software (e.g., drivers, codecs)
components associated with providing audio functions to the
computing device. In one embodiment, a user interacts with
the tablet computing device or smart phone by providing
audio commands that are received and processed by proces-
sor 410.

Display subsystem 430 represents hardware (e.g., display
devices) and software (e.g., drivers) components that provide
a visual and/or tactile display for a user to interact with the
tablet computing device or smart phone. Display subsystem
430 includes display interface 432, which includes the par-
ticular screen or hardware device used to provide a display to
auser. In one embodiment, display subsystem 430 includes a
touchscreen device that provides both output and input to a
user.

1/O controller 440 represents hardware devices and soft-
ware components related to interaction with a user. 1/O con-
troller 440 can operate to manage hardware that is part of
audio subsystem 420 and/or display subsystem 430. Addi-
tionally, I/O controller 440 illustrates a connection point for
additional devices that connect to the tablet computing device
or smart phone through which a user might interact. In one
embodiment, I/O controller 440 manages devices such as
accelerometers, cameras, light sensors or other environmen-
tal sensors, or other hardware that can be included in the tablet
computing device or smart phone. The input can be part of
direct user interaction, as well as providing environmental
input to the tablet computing device or smart phone.

In one embodiment, the tablet computing device or smart
phone includes power management 450 that manages battery
power usage, charging of the battery, and features related to
power saving operation. Memory subsystem 460 includes
memory devices for storing information in the tablet comput-
ing device or smart phone. Connectivity 470 includes hard-
ware devices (e.g., wireless and/or wired connectors and
communication hardware) and software components (e.g.,
drivers, protocol stacks) to the tablet computing device or
smart phone to communicate with external devices. Cellular
connectivity 472 may include, for example, wireless carriers
such as GSM (global system for mobile communications),
CDMA (code division multiple access), TDM (time division
multiplexing), or other cellular service standards). Wireless
connectivity 474 may include, for example, activity that is not
cellular, such as personal area networks (e.g., Bluetooth),
local area networks (e.g., WiFi), and/or wide area networks
(e.g., WiMax), or other wireless communication.

Peripheral connections 480 include hardware interfaces
and connectors, as well as software components (e.g., drivers,
protocol stacks) to make peripheral connections as a periph-
eral device (“to” 482) to other computing devices, as well as
have peripheral devices (“from” 484) connected to the tablet
computing device or smart phone, including, for example, a
“docking” connector to connect with other computing

US 9,164,735 B2

13

devices. Peripheral connections 480 include common or stan-
dards-based connectors, such as a Universal Serial Bus
(USB) connector, DisplayPort including MiniDisplayPort
(MDP), High Definition Multimedia Interface (HDMI),
Firewire, etc.

FIG. 5 illustrates a diagrammatic representation of a
machine 500 in the exemplary form of a computer system, in
accordance with one embodiment, within which a set of
instructions, for causing the machine 500 to perform any one
or more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine may be
connected, networked, interfaced, etc., with other machines
in a Local Area Network (LAN), a Wide Area Network, an
intranet, an extranet, or the Internet. The machine may oper-
ate in the capacity of a server or a client machine in a client-
server network environment, or as a peer machine in a peer-
to-peer (or distributed) network environment. Certain
embodiments of the machine may be in the form of a personal
computer (PC), a tablet PC, a set-top box (STB), a Personal
Digital Assistant (PDA), a cellular telephone, a web appli-
ance, a server, a network router, switch or bridge, computing
system, or any machine capable of executing a set of instruc-
tions (sequential or otherwise) that specify actions to be taken
by that machine. Further, while only a single machine is
illustrated, the term “machine” shall also be taken to include
any collection of machines (e.g., computers) that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

The exemplary computer system 500 includes a processor
502, a main memory 504 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
such as synchronous DRAM (SDRAM) or Rambus DRAM
(RDRAM), etc., static memory such as flash memory, static
random access memory (SRAM), volatile but high-data rate
RAM, etc.), and a secondary memory 518 (e.g., a persistent
storage device including hard disk drives and persistent data
base implementations), which communicate with each other
via a bus 530. Main memory 504 includes information and
instructions and software program components necessary for
performing and executing the functions with respect to the
various embodiments of the systems, methods, and entities as
described herein including the client, attestation verifier,
upgrade service provider and the services provider. Binary
executable instructions 524 for each of multiple non-uniform
computing devices capable of executing instructions may be
stored within main memory 504. Polymorphic objects 523
capable of instantiation and execution at one or multiple of
non-uniform computing devices may be stored within main
memory 504. Main memory 504 and its sub-elements (e.g.
523 and 524) are operable in conjunction with processing
logic 526 and/or software 522 and processor 502 to perform
the methodologies discussed herein.

Processor 502 represents one or more general-purpose pro-
cessing devices such as a microprocessor, central processing
unit, or the like. More particularly, the processor 502 may be
a complex instruction set computing (CISC) microprocessor,
reduced instruction set computing (RISC) microprocessor,
very long instruction word (VLIW) microprocessor, proces-
sor implementing other instruction sets, or processors imple-
menting a combination of instruction sets. Processor 502 may
also be one or more special-purpose processing devices such
as an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. Processor 502 is con-
figured to execute the processing logic 526 for performing the
operations and functionality which is discussed herein.

20

35

40

45

55

14

The computer system 500 may further include one or more
network interface cards 508 to communicatively interface the
computer system 500 with one or more networks 520, such as
the Internet or a publicly accessible network. The computer
system 500 also may include a user interface 510 (such as a
video display unit, a liquid crystal display (LCD), or a cath-
ode ray tube (CRT)), an alphanumeric input device 512 (e.g.,
a keyboard), a cursor control device 514 (e.g., a mouse), and
a signal generation device 516 (e.g., an integrated speaker).
The computer system 500 may further include peripheral
device 536 (e.g., wireless or wired communication devices,
memory devices, storage devices, audio processing devices,
video processing devices, etc.). Compiler 534 may optionally
be integrated into the exemplary machine 500.

The secondary memory 518 may include a non-transitory
machine-readable storage medium (or more specifically a
non-transitory machine-accessible storage medium) 531 on
which is stored one or more sets of instructions (e.g., software
522) embodying any one or more of the methodologies or
functions described herein. Software 522 may also reside, or
alternatively reside within main memory 504, and may fur-
ther reside completely or at least partially within the proces-
sor 502 during execution thereof by the computer system 500,
the main memory 504 and the processor 502 also constituting
machine-readable storage media. The software 522 may fur-
ther be transmitted or received over a network 520 via the
network interface card 508.

In accordance with the preceding disclosure, the following
exemplary embodiments are presented as follows:

According to a first embodiment there is a method having
the following operations: receiving, at a device aware com-
piler, source code for acomputer program as input; compiling
the source code for the computer program, in which the
compiling includes at least: generating two distinct sets of
executable binary instructions for a method of an object; in
which a first of the two distinct sets of executable binary
instructions for the method of the object provides first binary
instructions for the method executable by a first computing
device and not executable by a second computing device; and
in which a second of the two distinct sets of executable binary
instructions for the method of the object provides second
binary instructions for the method executable by the second
computing device and not executable by the first computing
device.

According to an embodiment of the method, the device
aware compiler compiles the two distinct sets of executable
binary instructions for a heterogeneous computing platform
having both the first computing device and the second com-
puting device embodied therein.

According to an embodiment of the method, compiling the
source code for the computer program includes compiling the
source code for a heterogeneous computing platform, distinct
from a system within which the device aware compiler oper-
ates; in which the first computing device includes a Central
Processing Unit (CPU) of the heterogeneous computing plat-
form; and in which the second computing device includes a
Graphics Processing Unit (GPU) of the heterogeneous com-
puting platform.

According to an embodiment of the method, the CPU
includes a first instruction set which is incompatible with the
GPU; and in which the GPU includes a second instruction set
which is incompatible with the CPU.

According to an embodiment of the method, the source
code for the computer program received as input at the device
aware compiler is device agnostic source code; and in which
compiling the source code for the computer program includes
compiling the device agnostic source code for the computer

US 9,164,735 B2

15

program via the device aware compiler; and in which the
compiling includes at least: generating CPU-specific execut-
able binary instructions for the method of the object for
execution by the CPU of the heterogeneous computing plat-
form when the object resides at the CPU and method is
referenced for execution by the CPU; and generating GPU-
specific executable binary instructions for the method of the
object for execution by the GPU of the heterogeneous com-
puting platform when the object resides at the GPU and
method is referenced for execution by the GPU.

According to an embodiment of the method, each of the
first computing device and the second computing device are
selected from a group including: (i) a Central Processing Unit
(CPU) ataheterogeneous computing platform, (ii) a Graphics
Processing Unit (GPU) at the heterogeneous computing plat-
form, (iii) an accelerator device capable of executing binary
instructions at the heterogeneous computing platform, and
(iv) an imaging device capable of executing binary instruc-
tions at the heterogeneous computing platform; and in which
each of'the first computing device and the second computing
device selected are distinct from one another within the het-
erogeneous computing platform, the heterogeneous comput-
ing platform being distinct from a system within which the
device aware compiler operates.

According to an embodiment of the method, each of the
first computing device and the second computing device
embody different instruction sets.

According to an embodiment of the method, the different
instruction set for each of the first computing device and the
second computing device requires a first set of binary execut-
able instructions for the first computing device to execute the
method of the of the object at the first computing device and
a second set of binary executable instructions for the second
computing device, different than the first set of binary execut-
able instructions, to execute the method of the of the object at
the second computing device.

According to an embodiment of the method, each of the
first computing device and the second computing device uti-
lize shared memory within the heterogeneous computing
platform; and in which the first set of binary executable
instructions for the first computing device and the second set
of binary executable instructions for the second computing
device both reside within the shared memory at distinct loca-
tions.

According to an embodiment of the method, each of the
first computing device and the second computing device uti-
lize exclusive address space for their respective binary
instructions; in which the first set of binary executable
instructions for the first computing device resides within a
first data structure of the exclusive address space for the first
computing device; in which the second set of binary execut-
able instructions for the second computing device resides
within a second data structure both of the exclusive address
space for the second computing device; and in which the first
data structure is different than the second data structure.

According to an embodiment of the method, the computer
program received as input for compiling includes a plurality
of polymorphic objects, each capable of instantiation within
the heterogeneous computing platform, and each capable of
being copied, moved, or transitioned between the first and
second computing devices of the heterogeneous computing
platform.

According to an embodiment of the method, the heteroge-
neous computing platform is embodied within one of a tablet
computing device or a smartphone distinct from a system
within which the device aware compiler operates.

10

20

25

30

40

45

16

According to an embodiment of the method, the two dis-
tinct sets of executable binary instructions are to be executed
at the heterogeneous computing platform by: referencing the
binary instructions for the first computing device through a
two-stage indirection scheme via a handle indicating the
object is executing at the first computing device or referenc-
ing the binary instructions for the second computing device
through a two-stage indirection scheme via a handle indicat-
ing the object is executing at the second computing device;
and in which the two-stage indirection scheme is to indicate,
via the handle, in which the object is executing without regard
to which of the first computing device or the second comput-
ing device originally instantiated the object.

According to an embodiment of the method, the compiling
further includes generating the two-stage indirection scheme;
and in which the two-stage indirection scheme includes: ref-
erencing a first virtual function table (vtable) specific to the
first computing device and embodied therein; referencing a
second vtable specific to the second computing device and
embodied therein; the first and second vtable having identical
array sizes; and in which the device aware compiler renders
an index for each of the first and second computing devices
into the first and second vtables specific to the first and second
computing devices individually.

According to an embodiment of the method, the device
aware compiler renders a vtable for each of the first and
second computing devices for every object of the computer
program which is capable of execution at each of the first and
second computing devices.

According to an embodiment of the method, each of the
respective first and second vtables include pointers from the
method of the object to device specific binary instructions
executable at the respective first or second computing device.

According to an embodiment of the method, the two-stage
indirection scheme includes: the first computing device hav-
ing embodied therein a first array of vtables for each of a
plurality of base classes which is capable of execution at the
first computing device; the second computing device having
embodied therein a second array of vtables for each of the
plurality of base classes which is capable of execution at the
second computing device; each vtable within the first array of
vtables corresponding to a vtable in the second array of
vtables, the corresponding vtables being identical in size; and
in which the device aware compiler provides a referenceable
handle for each of the plurality of base classes, the handle
operable as an array index, in which each vtable array size
equals a number of derived classes for each base class among
the plurality of base classes.

According to an embodiment of the method, the two-stage
indirection scheme includes: the first computing device hav-
ing embodied therein a first hash table of vtables for each of
a plurality of classes within the computer program; the sec-
ond computing device having embodied therein a second
hash table of vtables for each of the plurality of classes within
the computer program; in which the first hash table of vtables
and the second hash table of vtables differ in size due to one
or more of the plurality of classes within the computer pro-
gram being instantiated at one but not both of the first and
second computing devices; and in which the device aware
compiler renders a vtable handle formed from unique hash
keys corresponding to a mangled class name for each of the
plurality of classes within the computer program, each of the
unique hash keys pointing to a device specific vtable for the
corresponding class at one of the first or second computing
devices.

According to an embodiment of the method, the two-stage
indirection scheme includes: the first computing device hav-

US 9,164,735 B2

17

ing embodied therein a first hash table of vtables for each of
a plurality of classes within the computer program; the sec-
ond computing device having embodied therein a second
hash table of vtables for each of the plurality of classes within
the computer program; in which the first hash table of vtables
and the second hash table of vtables differ in size due to one
or more of the plurality of classes within the computer pro-
gram being instantiated at one but not both of the first and
second computing devices; and in which the device aware
compiler renders a vtable handle formed from unique hash
keys, each of the unique hash keys being a function of a
mangled class name for each of the plurality of classes within
the computer program.

According to an embodiment of the method, the two-stage
indirection scheme includes: the first computing device hav-
ing embodied therein a first hash table of vtables for each of
a plurality of classes within the computer program; the sec-
ond computing device having embodied therein a second
hash table of vtables for each of the plurality of classes within
the computer program; in which the first hash table of vtables
and the second hash table of vtables differ in size due to one
or more of the plurality of classes within the computer pro-
gram being instantiated at one but not both of the first and
second computing devices; and in which the device aware
compiler renders a vtable handle formed by assigning every
class among the plurality of classes for the computer program
a global Unique Identifier (UID).

According to an embodiment of the method, the device
aware compiler operates within a compiler system; and in
which the method further includes: installing the two distinct
sets of executable binary instructions for the computer pro-
gram to the heterogeneous computing platform, distinct from
the compiler system; executing the two distinct sets of execut-
able binary instructions at the heterogeneous computing plat-
form.

According to an embodiment of the method, executing the
two distinct sets of executable binary instructions at the het-
erogeneous computing platform, includes: executing the
computer program within the heterogeneous computing plat-
form having the first computing device and the second com-
puting device, each of a different type; instantiating the object
of the computer program at the first computing device; mov-
ing the object instantiated at the first computing device to the
second computing device for further execution; invoking the
method of the object at the second computing device; and
executing binary instructions referenced by the invoked
method of the object, in which the binary instructions are
executed by the second computing device.

According to an embodiment of the method, moving the
object instantiated at the first computing device to the second
computing device for further execution includes moving an
object instantiated at a Central Processing Unit (CPU) of the
heterogeneous computing platform to a Graphics Processing
Unit (GPU) of the heterogeneous computing platform for
further execution.

There is according to another embodiment, one or more
non-transitory computer readable storage media having
instructions stored thereon that, when executed by a compiler
system, the instructions cause the compiler system to perform
operations including: receiving, at a device aware compiler,
source code for a computer program as input; compiling the
source code for the computer program, in which the compil-
ing includes at least: generating two distinct sets of execut-
able binary instructions for a method of an object; in which a
first of the two distinct sets of executable binary instructions
for the method of the object provides first binary instructions
for the method executable by a first computing device and not

20

25

35

40

45

55

18

executable by a second computing device; and in which a
second of the two distinct sets of executable binary instruc-
tions for the method of the object provides second binary
instructions for the method executable by the second comput-
ing device and not executable by the first computing device.

According to another embodiment of the one or more non-
transitory computer readable storage media, in which each of
the first computing device and the second computing device
embody different instruction sets.

According to another embodiment of the one or more non-
transitory computer readable storage media, in which the
different instruction set for each of the first computing device
and the second computing device requires a first set of binary
executable instructions for the first computing device to
execute the method of the of the object at the first computing
device and a second set of binary executable instructions for
the second computing device, different than the first set of
binary executable instructions, to execute the method of the of
the object at the second computing device.

According to another embodiment of the one or more non-
transitory computer readable storage media, the heteroge-
neous computing platform is embodied within one of a tablet
computing device or a smartphone distinct from the compiler
system.

There is a computing device in accordance with one
embodiment, in which the computing device includes: a Cen-
tral Processing Unit (CPU) embodying a first instruction set;
a Graphics Processing Unit (GPU) embodying a second
instruction set different than the first instruction set of the
CPU; a shared memory operable in conjunction with both the
CPU and the GPU; and a computer program having a plurality
of objects capable of instantiation and execution at one or
both ofthe GPU and the CPU; in which the computer program
causes the computing device to: (i) instantiate one of the
plurality of objects of the computer program at the CPU, (ii)
move the object instantiated at the CPU to the GPU for further
execution, (iii) invoke a method of the object at the GPU, and
(iv) execute binary instructions referenced by the invoked
method of the object, in which the binary instructions are
executed by the GPU.

According to another embodiment of the computing
device, the computing device is embodied within one of a
tablet computing device or a smartphone.

According to another embodiment of the computing
device, the computer program is compiled by a device aware
compiler compatible with both the GPU and the CPU of the
tablet computing device or smartphone, and further in which
the computer program is downloaded to the tablet computing
device or smartphone for execution.

While the subject matter disclosed herein has been
described by way of example and in terms of the specific
embodiments, it is to be understood that the claimed embodi-
ments are not limited to the explicitly enumerated embodi-
ments disclosed. To the contrary, the disclosure is intended to
cover various modifications and similar arrangements as
would be apparent to those skilled in the art. Therefore, the
scope ofthe appended claims should be accorded the broadest
interpretation so as to encompass all such modifications and
similar arrangements. It is to be understood that the above
description is intended to be illustrative, and not restrictive.
Many other embodiments will be apparent to those of skill in
the art upon reading and understanding the above description.
The scope of the disclosed subject matter is therefore to be
determined in reference to the appended claims, along with
the full scope of equivalents to which such claims are entitled.

US 9,164,735 B2

19

What is claimed is:

1. A method comprising:

receiving, at a device aware compiler, source code for a

computer program as input;

compiling the source code for the computer program,

wherein the compiling includes at least:

generating two distinct sets of executable binary instruc-

tions for a method of an object, a first of the two distinct
sets of executable binary instructions executable by a
first computing device and not executable by a second
computing device, and a second of the two distinct sets
of executable binary instructions executable by the sec-
ond computing device and not executable by the first
computing device;

enabling device aware execution of the two distinct sets of

executable binary instructions using a two-stage indirec-
tion scheme, the two-stage indirection scheme includ-
ing:

encoding a handle to a shared virtual function table

(vtable), the handle indicating at which of the first and
second computing devices the object is executing with-
out regard to where the object was originally instanti-
ated; and

performing a look up to a device-specific vtable based on

the handle to the shared vtable, the device specific vtable
having a pointer to one of the two distinct sets of execut-
able binary instructions executable by a respective one
of the first and second computing devices at which the
object is executing, wherein performing the look up
includes:

referencing a first device specific vtable specific to the first

computing device and embodied therein; and
referencing a second device specific vtable specific to the
second computing device and embodied therein.
2. The method of claim 1, wherein the device aware com-
piler compiles the two distinct sets of executable binary
instructions for a heterogeneous computing platform having
both the first computing device and the second computing
device embodied therein.
3. The method of claim 1:
wherein compiling the source code for the computer pro-
gram comprises compiling the source code for a hetero-
geneous computing platform, distinct from a system
within which the device aware compiler operates;

wherein the first computing device includes a Central Pro-
cessing Unit (CPU) of the heterogeneous computing
platform; and

wherein the second computing device includes a Graphics

Processing Unit (GPU) of the heterogeneous computing
platform.

4. The method of claim 3:

wherein the CPU includes a first instruction set which is

incompatible with the GPU; and

wherein the GPU includes a second instruction set which is

incompatible with the CPU.

5. The method of claim 4:

wherein the source code for the computer program

received as input at the device aware compiler is device
agnostic source code; and

wherein compiling the source code for the computer pro-

gram comprises compiling the device agnostic source
code for the computer program via the device aware
compiler; and

wherein the compiling includes at least:

generating CPU-specific executable binary instructions for

the method of the object for execution by the CPU of a

15

30

40

45

55

60

65

20

heterogeneous computing platform when the object
resides at the CPU and the method is referenced for
execution by the CPU; and

generating GPU-specific executable binary instructions for
the method of the object for execution by the GPU of the
heterogeneous computing platform when the object
resides at the GPU and the method is referenced for
execution by the GPU.

6. The method of claim 1:

wherein each of the first computing device and the second
computing device are selected from a group including:

(1) a Central Processing Unit (CPU) at a heterogeneous
computing platform,

(i1) a Graphics Processing Unit (GPU) at the heterogeneous
computing platform,

(ii1) an accelerator device capable of executing binary
instructions at the heterogeneous computing platform,
and

(iv) an imaging device capable of executing binary instruc-
tions at the heterogeneous computing platform; and

wherein each of the first computing device and the second
computing device selected are distinct from one another
within the heterogeneous computing platform, the het-
erogeneous computing platform being distinct from a
system within which the device aware compiler oper-
ates.

7. The method of claim 1, wherein each of the first com-
puting device and the second computing device embody dif-
ferent instruction sets.

8. The method of claim 7, wherein the different instruction
set for each of the first computing device and the second
computing device requires a first set of binary executable
instructions for the first computing device to execute the
method of the of the object at the first computing device and
a second set of binary executable instructions for the second
computing device, different than the first set of binary execut-
able instructions, to execute the method of the of the object at
the second computing device.

9. The method of claim 8:

wherein each of the first computing device and the second
computing device utilize shared memory within a het-
erogeneous computing platform; and

wherein the first set of binary executable instructions for
the first computing device and the second set of binary
executable instructions for the second computing device
both reside within the shared memory at distinct loca-
tions.

10. The method of claim 8:

wherein each of the first computing device and the second
computing device utilize exclusive address space for
their respective binary instructions;

wherein the first set of binary executable instructions for
the first computing device resides within a first data
structure of the exclusive address space for the first
computing device;

wherein the second set of binary executable instructions for
the second computing device resides within a second
data structure both of the exclusive address space for the
second computing device; and

wherein the first data structure is different than the second
data structure.

11. The method of claim 1, wherein the computer program
received as input for compiling includes a plurality of poly-
morphic objects, each capable of instantiation within a het-
erogeneous computing platform, and each capable of being
copied, moved, or transitioned between the first and second
computing devices of the heterogeneous computing platform.

US 9,164,735 B2

21

12. The method of claim 1, wherein a heterogeneous com-
puting platform is embodied within one of a tablet computing
device or a smartphone distinct from a system within which
the device aware compiler operates.

13. The method of claim 1, wherein

the first and second vtable having identical array sizes; and

the device aware compiler renders an index for each of the

first and second computing devices into the first and
second vtables specific to the first and second computing
devices individually.

14. The method of claim 13, wherein the device aware
compiler renders a vtable for each of the first and second
computing devices for every object of the computer program
which is capable of execution at each of the first and second
computing devices.

15. The method of claim 13, wherein each of the respective
first and second vtables include pointers from the method of
the object to device specific binary instructions executable at
the respective first or second computing device.

16. The method of claim 1, wherein the two-stage indirec-
tion scheme includes:

the first computing device having embodied therein a first

array of vtables for each of a plurality of base classes
which is capable of execution at the first computing
device;

the second computing device having embodied therein a

second array of vtables for each of the plurality of base
classes which is capable of execution at the second com-
puting device;

each vtable within the first array of vtables corresponding

to a vtable in the second array of vtables, the correspond-
ing vtables being identical in size; and

wherein the device aware compiler provides a reference-

able handle for each of the plurality of base classes, the
handle operable as an array index, wherein each vtable
array size equals a number of derived classes for each
base class among the plurality of base classes.

17. The method of claim 1, wherein the two-stage indirec-
tion scheme includes:

the first computing device having embodied therein a first

hash table of vtables for each of a plurality of classes
within the computer program;

the second computing device having embodied therein a

second hash table of vtables for each of the plurality of
classes within the computer program;

wherein the first hash table of vtables and the second hash

table of vtables differ in size due to one or more of the
plurality of classes within the computer program being
instantiated at one but not both of the first and second
computing devices; and

wherein the device aware compiler renders a vtable handle

formed from unique hash keys corresponding to a
mangled class name for each of the plurality of classes
within the computer program, each of the unique hash
keys pointing to a device specific vtable for the corre-
sponding class at one of the first or second computing
devices.

18. The method of claim 1, wherein the two-stage indirec-
tion scheme includes:

the first computing device having embodied therein a first

hash table of vtables for each of a plurality of classes
within the computer program;

the second computing device having embodied therein a

second hash table of vtables for each of the plurality of
classes within the computer program;

wherein the first hash table of vtables and the second hash

table of vtables differ in size due to one or more of the

10

15

20

25

30

35

40

45

50

55

60

65

22

plurality of classes within the computer program being
instantiated at one but not both of the first and second
computing devices; and

wherein the device aware compiler renders a vtable handle

formed from unique hash keys, each of the unique hash
keys being a function of a mangled class name for each
of the plurality of classes within the computer program.

19. The method of claim 1, wherein the two-stage indirec-
tion scheme includes:

the first computing device having embodied therein a first

hash table of vtables for each of a plurality of classes
within the computer program;

the second computing device having embodied therein a

second hash table of vtables for each of the plurality of
classes within the computer program;

wherein the first hash table of vtables and the second hash

table of vtables differ in size due to one or more of the
plurality of classes within the computer program being
instantiated at one but not both of the first and second
computing devices; and

wherein the device aware compiler renders a vtable handle

formed by assigning every class among the plurality of
classes for the computer program a global Unique Iden-
tifier (UID).

20. The method of claim 1:

wherein the device aware compiler operates within a com-

piler system; and
wherein the method further comprises:
installing the two distinct sets of executable binary instruc-
tions for the computer program to a heterogeneous com-
puting platform, distinct from the compiler system;

executing the two distinct sets of executable binary instruc-
tions at the heterogeneous computing platform.

21. The method of claim 20, wherein executing the two
distinct sets of executable binary instructions at a heteroge-
neous computing platform, comprises:

executing the computer program within the heterogeneous

computing platform having the first computing device
and the second computing device, each of a different
type;

instantiating the object of the computer program at the first

computing device;

moving the object instantiated at the first computing device

to the second computing device for further execution;
invoking the method of the object at the second computing
device; and

executing binary instructions referenced by the invoked

method of the object, wherein the binary instructions are
executed by the second computing device.

22. The method of claim 21, wherein moving the object
instantiated at the first computing device to the second com-
puting device for further execution includes moving an object
instantiated at a Central Processing Unit (CPU) of a hetero-
geneous computing platform to a Graphics Processing Unit
(GPU) of the heterogeneous computing platform for further
execution.

23. One or more non-transitory computer readable storage
media having instructions stored thereon that, when executed
by a compiler system, the instructions cause the compiler
system to perform operations including:

receiving, at a device aware compiler, source code for a

computer program as input;

compiling the source code for the computer program,

wherein the compiling includes at least:

generating two distinct sets of executable binary instruc-

tions for a method of an object, a first of the two distinct
sets of executable binary instructions executable by a

US 9,164,735 B2

23

first computing device and not executable by a second
computing device, and a second of the two distinct sets
of executable binary instructions executable by the sec-
ond computing device and not executable by the first
computing device;

enabling device aware execution of the two distinct sets of
executable binary instructions using a two-stage indirec-
tion scheme, the two-stage indirection scheme includ-
ing:

encoding a handle to a shared virtual function table
(vtable), the handle indicating at which of the first and
second computing devices the object is executing with-
out regard to where the object was originally instanti-
ated; and

performing a look up to a device-specific vtable based on
the handle to the shared vtable, the device specific vtable
having a pointer to one of the two distinct sets of execut-
able binary instructions executable by a respective one
of the first and second computing devices at which the
object is executing, wherein performing the look up
includes:

referencing a first device specific vtable specific to the first
computing device and embodied therein; and

referencing a second device specific vtable specific to the
second computing device and embodied therein.

15

20

24

24. The one or more non-transitory computer readable
storage media of claim 23, wherein each of the first comput-
ing device and the second computing device embody differ-
ent instruction sets.

25. The one or more non-transitory computer readable
storage media of claim 24, wherein the different instruction
set for each of the first computing device and the second
computing device requires a first set of binary executable
instructions for the first computing device to execute the
method of the of the object at the first computing device and
a second set of binary executable instructions for the second
computing device, different than the first set of binary execut-
able instructions, to execute the method of the of the object at
the second computing device.

26. The one or more non-transitory computer readable
storage media of claim 23, wherein a heterogeneous comput-
ing platform is embodied within one of a tablet computing
device or a smartphone distinct from the compiler system.

27. The one or more non-transitory computer readable
storage media of claim 23, wherein:

the first and second vtable having identical array sizes; and

the device aware compiler renders an index for each of the

first and second computing devices into the first and
second vtables specific to the first and second computing
devices individually.

#* #* #* #* #*

